
© Copyright IBM Corporation 2008 Trademarks
How XQuery extends XPath Page 1 of 9

How XQuery extends XPath
Things you can do in XQuery but not XPath

Donnie Cameron April 01, 2008

XPath and XQuery are similar in some ways. XPath is even an integral part of XQuery. Both
languages allow you to select bits of data from an XML document or an XML document store.
In this article, you'll find descriptions of XPath and XQuery, and learn how XQuery extends
XPath.

Although both XPath and XQuery perform some of the same functions, XPath provides simplicity
and XQuery provides additional power and flexibility. XPath is the perfect tool for many types
of queries. For example, XPath is the easiest way for you to create an unordered list of phone
numbers from a subset of records in an XML document. However, if you need a query that
expresses more complex record-selection criteria, transforms the result set, or requires recursion,
then you need XQuery.

XPath

XPath is a domain-specific language (DSL) that is quickly becoming an important part of other
more general-purpose languages. Programming languages are incorporating XPath through
modules and classes, and in some cases directly into the languages' syntax. This is similar to what
happened with regular expressions some time ago.

XPath is popular because of the considerable amount of time and effort that the language can
save a developer when extracting specific bits of data from an XML document. Even individuals
who have never dealt with XPath before can quickly harness its power. Consider the XML
fragment in Listing 1.

Listing 1. XML Document

 <users>
 <user>
 <name>
 <first>Lola</first>
 <last>Solis</last>
 </name>

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

developerWorks® ibm.com/developerWorks/

How XQuery extends XPath Page 2 of 9

 <age>2</age>
 </user>
 <user>
 <name>
 <first>Nina</first>
 <last>Serafina</last>
 </name>
 <age>4</age>
 <visits>
 <first>2008-01-15</first>
 <last>2008-02-15</last>
 </visits>
 </user>
 <user>
 <name>
 <first>Tracy</first>
 <last>Keller</last>
 </name>
 <age>35</age>
 </user>
 </users>

If you want to obtain a list of last names of the children in this document, you can use the following
XPath expression.

Listing 2. Selecting the last names of the users that are under 18 years old
 /user[age lt 18]/name/last/text()

 (: Result
 Solis
 Serafina
 :)

Imagine the code that you'd have to write to extract that data without XPath. Even with the help of
regular expressions, you'd need to think a little about how to exclude the value from the last tag
that's in the visits node.

The above XPath expression is not only concise, but also quite clear. A quick glance reveals what
the expression does, even to people that don't know XPath. XPath works because it is powerful
and because it has a long history behind it. The language understands the nodes in an XML
document of arbitrary complexity and, more importantly, the relationships among those nodes. So
you can write concise expressions that consider not only elements and element values, but also
attributes, processing instructions, and so on.

Many XML queries are hard to express in a clearer and conciser manner than with XPath. But
the DSL-nature of XPath and the language's goals impose some fairly serious limitations on the
programmer. The sections that follow describe the XQuery language briefly and show problems
that XPath alone cannot solve. These problems require the programmer to move beyond XPath to
a tool like XQuery.

XQuery
Because XQuery supports XPath natively, as part of XQuery's syntax, XQuery clearly can do
everything that XPath can do. But XQuery is Turing-complete and can be considered a general-

ibm.com/developerWorks/ developerWorks®

How XQuery extends XPath Page 3 of 9

purpose language; it easily overcomes many of the limitations of XPath, at the expense of
introducing a little complexity.

Overview

XQuery uses a simple syntax that is a mix of XML, XPath, comments, functions, and a special
expression syntax to tie it all together. XQuery code consists entirely of expressions with no
statements. All values are sequences and simplicity is important to the language. So both of
the expressions Hi and 2 * 2 are valid XQuery code that will execute without any prelude or
modification. XQuery is a high-level, strongly-typed, functional language (free of side-effects) that
is ideal to express a query to obtain data both from an XML document and a large XML document
repository. In this last respect, it is much like SQL. But XQuery additionally provides for expressing
an arbitrary transformation of the result set. Much like the use of XPath can be rewarding when
you want to retrieve some data from an XML document, the use of XQuery can be quite rewarding
when you want to retrieve and transform data from a large repository of XML documents.

Transforming the result set

One obvious limitation of XPath is that it doesn't provide for transforming the result set in any way.
Suppose you wanted to return the results from the earlier XPath query (Listing 2) in alphabetical
order, as shown in Listing 3.

Listing 3. Results in alphabetical order
Serafina
Solis

You can't do this with XPath. To achieve this, you'd have to write code in another language (like
XQuery, for example) or use some special, proprietary XPath extension to sort the results.

XQuery, on the other hand, allows you to sort the results or transform them into HTML, CSV,
SQL, or any other text-based format. Among the most powerful types of transformations that you
can do with XQuery are XML to XML transformations. Often, large XML databases can contain
a large variety of complex, interrelated XML documents that a client application doesn't need.
XQuery allows a client to describe precisely the type of XML document that it would like the server
to return. By providing an XQuery interface, a server can often avoid keeping data in multiple
schemas. Moreover, using XQuery to transform the data for a client is usually far easier and faster
than attempting to transform the data with Perl or Java or some other popular computer language.
Certainly, transforming data with XQuery when you retrieve the data is much faster in current
implementations than performing a transformation later with XSLT.

For tying together record-selection criteria and result-transformation instructions, XQuery provides
a feature called a FLWOR (pronounced "flower") expression. The letters in the acronym stand
for for, let, where, order by, and return. These are the elements that can make up a FLWOR
expression. FLWOR expressions include at least some of those elements in roughly the order that
the acronym suggests. All FLWOR expressions start with a for or a let expression and end with a
return expression. If you're familiar with SQL, you might already see where I am headed with this.

developerWorks® ibm.com/developerWorks/

How XQuery extends XPath Page 4 of 9

Here's a simple FLWOR expression, which borrows from Edwin Markham's poem, "Outwitted" (see
Listing 4).

Listing 4. Simple FLWOR expression
let $xml:=
 <a>
 <one>She drew a circle that shut me out</one>
 <two>Heretic rebel, a thing to flout</two>

return $xml//one/text()

(: Result
 "She drew a circle that shut me out"
:)

Listing 5 shows how you can apply a simple FLWOR expression to the XML in Listing 1. (For
brevity, the listing shows the text _XML from Listing 1_ in place of the actual XML that belongs
there.)

Listing 5. Simple FLWOR expression
let $xml:= _XML from Listing 1_
for $user in $xml//user[age lt 18]
order by $user/name/last
return $user/name/last/text()

(: Result
 Serafina
 Solis
:)

If you wanted the query to return an HTML fragment representing the result as a numbered list,
you can apply the XQuery from Listing 6.

Listing 6. Simple FLWOR expression that outputs a numbered list in HTML
let $xml:= _XML from Listing 1_
return
 {
 for $user in $xml//user[age lt 18]
 order by $user/name/last
 return {$user/name/last/text()}
 }

(: Result
 SerafinaSolis
:)

Notice how XML and XQuery mix so intuitively and effectively in Listing 6.

Expressing more complex record-selection criteria
Aside from transforming the data that it retrieves, XQuery is also a lot better than XPath at finding
data in the first place. XQuery and XPath often provide redundancy, which can help programmers
be more expressive with queries. For example, Listing 7 shows how you can move the XPath
expression fragment age lt 18 into a where clause in the FLWOR expression.

ibm.com/developerWorks/ developerWorks®

How XQuery extends XPath Page 5 of 9

Listing 7. Expressing XPath constraints in XQuery
let $xml:= _XML from Listing 1_
return
 {
 for $user in $xml//user
 where $user/age lt 18
 order by $user/name/last
 return {$user/name/last/text()}
 }

The result that the expression in Listing 7 produces is exactly the same as the result of the
expression in Listing 6. But XQuery's where clause is significantly more flexible than the XPath
syntax for expressing constraints. The XQuery where clause can consist of nested expressions
of arbitrary complexity that can even include function calls. XQuery doesn't impose limitations on
record-selection expressions.

Using functions and recursion
While XPath doesn't support functions, XQuery provides a substantial collection of built-in
functions and operators and also allows users to define functions of their own. XQuery functions
are strongly typed, support recursion, and can be declared as internal or external. An internal
function is a standard function where the function body follows the function declaration. An
external function is a type of function declaration that opens the door for implementations to allow
the user to define the body of the function in a different programming language.

While recursion might not be the best approach for the tasks that many of developers undertake
day to day, it often comes in handy when you work with XML, which can contain arbitrarily nested
nodes. Consider the transform-names function defined in Listing 8.

Listing 8. Simple function to change node names in any XML document
(: Part 1 :)
define function transform-names($node as node()) as node() {
 element{replace(name($node), "_", "-")} {
 $node/text(), for $subnode in $node/* return transform-names($subnode)
 }
}

(: Part 2 :)
let $xml:=
<item>
 <item_type>book</item_type>
 <contributors>
 <author>
 <first_name>Charles</first_name>
 <last_name>Edward</last_name>
 <home_address>
 <home_street>206 S. Solomon St.</home_street>
 <home_city>New Orleans</home_city>
 <home_state>LA</home_state>
 <home_zip>70119</home_zip>
 </home_address>
 </author>
 <artist>
 <last_name>Salinas</last_name>
 </artist>
 </contributors>
</item>

developerWorks® ibm.com/developerWorks/

How XQuery extends XPath Page 6 of 9

return transform-names($xml)

(: Result
 <item>
 <item-type>book</item-type>
 <contributors>
 <author>
 <first-name>Charles</first-name>
 <last-name>Edward</last-name>
 <home-address>
 <home-street>206 S. Solomon St.</home-street>
 <home-city>New Orleans</home-city>
 <home-state>LA</home-state>
 <home-zip>70119</home-zip>
 </home-address>
 </author>
 <artist>
 <last-name>Salinas</last-name>
 </artist>
 </contributors>
 </item>
:)

The transform-names function, which amounts merely to the code that appears in Part 1 of Listing
8, accepts an XML document or node of arbitrary complexity. In every XML tag name, the function
replaces any underscore character (_) with a dash character (-).

Recursion in this case makes it trivial for the function to traverse the structure of the document.
As a result, the function is succinct (3 lines!), easy to maintain, and works with any valid XML
document or node that doesn't use attributes. Even if the function seems a little difficult to grasp
completely at first—especially for programmers that don't often resort to recursion—one might
quickly guess how to modify the function to delete underscores instead of replacing them with
dashes.

Expressing joins
XPath doesn't provide a means to join XML nodes in a query. However, just like SQL provides
a natural syntax to express table-joins in queries, XQuery provides an intuitive (at least to SQL
users) way to join sets of XML nodes. The code in Listing 9 describes how joins work in XQuery.

Listing 9. XQuery join expression
(: Part 1 :)
let $authors:=
 <authors>
 <author>
 <name>Harold Abelson</name>
 <books>
 <isbn>978-0-07-000422-1</isbn>
 <isbn>978-0-262-01063-4</isbn>
 </books>
 </author>
 <author>
 <name>Paul Graham</name>
 <books>
 <isbn>978-0-13-370875-2</isbn>
 <isbn>978-0-13-030552-7</isbn>
 <isbn>978-0-596-00662-4</isbn>
 </books>
 </author>

ibm.com/developerWorks/ developerWorks®

How XQuery extends XPath Page 7 of 9

 <author>
 <name>Apostolos-Paul Refenes</name>
 <books>
 <isbn>978-0-471-94364-8</isbn>
 <isbn>978-981-02-2819-4</isbn>
 </books>
 </author>
 </authors>

(: Part 2 :)
let $books:=
 <books>
 <book>
 <title>Structure and Interpretation of Computer Programs</title>
 <isbn>978-0-07-000422-1</isbn>
 </book>
 <book>
 <title>Turtle Geometry</title>
 <isbn>978-0-262-01063-4</isbn>
 </book>
 <book>
 <title>ANSI Common LISP</title>
 <isbn>978-0-13-370875-2</isbn>
 </book>
 <book>
 <title>On LISP</title>
 <isbn>978-0-13-030552-7</isbn>
 </book>
 <book>
 <title>Hackers and Painters</title>
 <isbn>978-0-596-00662-4</isbn>
 </book>
 <book>
 <title>Neural Networks in the Capital Markets</title>
 <isbn>978-0-471-94364-8</isbn>
 </book>
 <book>
 <title>Neural Networks in Financial Engineering</title>
 <isbn>978-981-02-2819-4</isbn>
 </book>
 <book>
 <title>Handbook of Artificial Intelligence</title>
 <isbn>978-0-201-16889-1</isbn>
 </book>
 <book>
 <title>Artificial Intelligence Programming</title>
 <isbn>978-0-89859-609-0</isbn>
 </book>
 <book>
 <title>A New Guide to Artificial Intelligence</title>
 <isbn>978-0-89391-607-7</isbn>
 </book>
 <book>
 <title>Artificial Intelligence</title>
 <isbn>978-0-08-034112-5</isbn>
 </book>
 <book>
 <title>Artificial Intelligence</title>
 <isbn>978-0-631-18385-3</isbn>
 </book>
 </books>

(: Part 3 :)
return
 <books-complete-info>{
 for $book in $books/*
 for $author in $authors/*

developerWorks® ibm.com/developerWorks/

How XQuery extends XPath Page 8 of 9

 where $book/isbn = $author//isbn
 and (
 contains($book/title, "LISP")
 or contains($book/title, "Neural"))
 order by $book/title
 return <book>{$book/*, $author/name}</book>
 }</books-complete-info>

Parts 1 and 2 of Listing 9 assign XML documents to the variables authors and books. Some of the
nodes in books relate to nodes in authors, such that a book node has an ISBN that is among the
ones listed for an author node.

Part 3 of the listing contains an XQuery join expression that assembles a new XML document,
books-complete-info (look ahead in Listing 10), that contains book nodes that include the author's
name.

Note a few remarkable things about the code in Part 3 of Listing 9. The two for expressions near
the beginning of that code hint to XQuery that this will be a join expression. The where clause is
similar conceptually to what one might write in SQL to achieve the join. But notice that an author
node can have multiple ISBNs, which requires that the where clause effectively mean: "where the
book's ISBN is among the author's ISBNs". This compares more to a sub-select within an SQL
where clause, but the XQuery syntax seems more intuitive and natural. And certainly the XQuery
expression is more concise.

Listing 10. Results from an XQuery join expression
<books-complete-info>
 <book>
 <title>ANSI Common LISP</title>
 <isbn>978-0-13-370875-2</isbn>
 <name>Paul Graham</name>
 </book>
 <book>
 <title>On LISP</title>
 <isbn>978-0-13-030552-7</isbn>
 <name>Paul Graham</name>
 </book>
 <book>
 <title>Neural Networks in the Capital Markets</title>
 <isbn>978-0-471-94364-8</isbn>
 <name>Apostolos-Paul Refenes</name>
 </book>
 <book>
 <title>Neural Networks in Financial Engineering</title>
 <isbn>978-981-02-2819-4</isbn>
 <name>Apostolos-Paul Refenes</name>
 </book>
</books-complete-info>

Summary
XPath is a mature DSL that should be your first choice to get to a piece of data that is buried
deep in an XML document or repository. But, XPath was not designed to handle many kinds of
problems. As you saw in this article, XQuery extends XPath vastly, emerging as the tool of choice
when you have complex data selection requirements or you need to return results that are sorted,
specially formatted, or otherwise transformed.

ibm.com/developerWorks/ developerWorks®

How XQuery extends XPath Page 9 of 9

Related topics

• W3C Recommendation for XQuery 1.0 Specification: Read the details on this query language
designed to be broadly applicable across many types of XML data sources.

• W3C Recommendation for XQuery 1.0 and XPath 2.0 Functions and Operators: Explore this
catalog of the functions and operators required for XPath 2.0, XML Query 1.0 and XSLT 2.0.

• W3C XML Query Use Cases: Look at usage scenarios for XQuery.
• What is XQuery (Per Bothner. O'Reilly xml.com, October 2002): Read this high level view

of XQuery that introduces main ideas that you should understand before you go deeper or
actually try to use it.

• Process XML using XQuery (Nicholas Chase, developerWorks, March 2007): In the tutorial ,
see how to use XQuery to retrieve information from an XML document stored in an XQuery-
enabled database.

• An Introduction to XQuery (Howard Katz, developerWorks, January 2006): Get some
background history, a road map into the documentation, and a snapshot of the current state of
the XQuery specification.

• XML Schema Part 2: Datatypes Second Edition: Peruse the specification for the XML Schema
language as it defines facilities for defining datatypes to be used in XML Schemas as well as
other XML specifications.

• XPath Recommendation: Read more on XPath, a language for addressing parts of an XML
document that is designed for use by both XSLT and XPointer.

• XML Path Language (XPath) 2.0: See where XPath is going.
• Turing test: Read about a proposal for a test of a machine's capability to demonstrate

intelligence, on Wikipedia.
• : Find out how you can become an IBM-Certified Developer.
• XML technical library: See the developerWorks XML Zone for a wide range of technical

articles and tips, tutorials, standards, and IBM Redbooks.
• DB2 Express-C 9.5: Download and try the XML database used for this tutorial.
• IBM trial software: Build your next development project with trial software available for

download directly from developerWorks.

© Copyright IBM Corporation 2008
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.w3.org/TR/xquery
http://www.w3.org/TR/xpath-functions
http://www.w3.org/TR/xquery-use-cases
http://www.xml.com/pub/a/2002/10/16/xquery.html
http://www.ibm.com/developerworks/edu/x-dw-xxquery-i.html
http://www.ibm.com/developerworks/xml/library/x-xquery.html
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath20
http://en.wikipedia.org/wiki/Turing_test
http://www.ibm.com/developerworks/views/xml/library.jsp
http://www.ibm.com/software/data/db2/express/
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX06&S_CMP=art
http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	XPath
	XQuery
	Overview
	Transforming the result set

	Expressing more complex record-selection criteria
	Using functions and recursion
	Expressing joins
	Summary
	Trademarks

