
© Copyright IBM Corporation 2009 Trademarks
6 tips for optimizing a native XML database Page 1 of 10

6 tips for optimizing a native XML database
Common sense guidelines for using XQuery with native XML
databases

Donnie Cameron December 15, 2009

RSS, Atom, mashups, extraordinary search requirements and other developments are making
native XML databases an important part of search applications and services. These types of
databases excel at efficiently searching through large collections of semi-structured data. In this
article, you'll find some common sense guidelines to maximize the performance of applications
that use XQuery and native XML databases.

XQuery and native XML databases
Frequently used acronyms

• RAM: Random-access memory
• RSS: Really Simple Syndication
• XML: Extensible Markup Language
• XSLT: Extensible Stylesheet Language Transformations

Using XQuery (a functional language designed to query collections of XML data) with native XML
database systems can be extremely useful in some situations. When servicing queries that are
complex and mostly read-only, compared to standard relational databases, native XML databases
provide faster response times and faster development times. wit the simplest and most powerful
data-transformation system available today built right into the query language, you gain faster
development times because you don't need to design a separate full-text indexing system or
assemble much of the data for the user.

At the cost of slower inserts and updates, native XML databases can provide vastly superior out-
of-the-box response times because they keep their data largely denormalized, provide default
indexes, and make excellent use of available RAM. However, when dealing with very large data
sets, you can further improve the query response times of a native XML database by following a
few general common sense guidelines:

• Avoid normalization
• Employ unique element names
• Precompute values
• Transform data with your queries

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

developerWorks® ibm.com/developerWorks/

6 tips for optimizing a native XML database Page 2 of 10

• Profile the XQuery code
• Keep a list of optimizations

These guidelines are general and applicable to many of the native XML databases that are
available today, including IBM DB2® Express-C, Mark Logic Server, eXist, and even Oracle
Berkeley DB XML (see Resources for links). Now let's look at the optimization guidelines in more
detail.

Avoid normalization
The most important thing you can do when you design a native XML database schema is to avoid
the temptation to normalize the data in the same way that you do when you design a relational
database.

Normalizing data for a native XML database consists of designing multiple XML document types
that link to each other in ways that are similar to the ways that relational-model tables link to each
other. However, in most cases, you'll need to normalize little if any of the data for a native XML
database. It's quite common to put data that would reside in tens of relational-model tables into a
single XML document type.

Most implementations of XQuery that exist today perform joins so inefficiently that even a simple
query involving a few thousand records can take an unacceptable amount of time to process. This
makes the criteria for deciding if you should normalize data straightforward: Never normalize data
such that a supported query will need to perform a join operation to select records.

A supported query is a query that you can reasonably expect the users to make of your data. For
example, if you build an application to sell video tapes, you might expect a user to query for all the
videos that have a certain keyword in the title and that were directed by a given person. Because
of this, you'd definitely want the XML document that represents the video to contain the title of the
video and the name of its director. On the other hand, for this particular application, you might not
want to support a query for all the videos that have a certain keyword in the title and that were
directed by a person born in New York. In other words, for the video application example, if you
have detailed information about the director (beyond the director's name), its okay to consider
keeping it in a separate XML document.

Picture a database with two linked XML document types, video-rec and director-rec, the former
with detailed information about videos including a director-rec identifier, the latter with detailed
information about directors. The query for a record with a keyword in the title and a director born in
New York is a query that has to perform a join operation to select records. As mentioned, it might
be okay not to support this type of query because it's more of a data-mining query, not really the
type of query that most users browsing an online video store make. However, unless you have
concrete reasons to move the director's details to a separate document type, you should keep it in
the video-rec document.

Although in a native XML database it's never efficient to perform a join operation to select records,
it's often perfectly okay to fetch data from multiple XML document types when transforming data
from search results. The video store I've described can easily and efficiently present results that

ibm.com/developerWorks/ developerWorks®

6 tips for optimizing a native XML database Page 3 of 10

included the place of birth of the director, even though obtaining the location requires fetching
data from a document that's not among the original search results. The operation necessary to
assemble the results in this way is limited to the few records that the application has already
selected and that it plans to display; it's computing and memory requirements are negligible
compared to what's needed to join multiple document types in a general search query.

Employ unique element names
Unique elements are elements that always refer to the same element in an XML document.
Non-unique elements are elements that can appear anywhere in the XML document and that
have to be preceded by a path to be meaningful. For example, if an XML document contains 10
entirely different types of nodes and each type includes a date element as a descendant, then the
date element is a non-unique element name. Employing non-unique element names can hinder
your ability to evaluate or profile some XQuery or XPath alternatives for locating your data. For
example, non-unique element names can keep you from properly evaluating code that performs
fewer index look-ups. Also, non-unique element names can get in the way of emerging support for
faceted search results.

The following sections provide examples of the kinds of optimizations that you can support by
changing the design of a document like the one in Listing 1 so that it uses distinct element names.

Listing 1. Base document with non-unique element names
#+BEGIN_SRC nxml-mode
<class-info>
 <school>Lusher Elementary School</school>
 <grade>10</grade>
 <teachers>
 <teacher>
 <name>
 <first>Carol</first>
 <last>Osborne</last>
 </name>
 </teacher>
 <teacher>
 <name>
 <first>Dan</first>
 <last>Silver</last>
 </name>
 </teacher>
 </teachers>
 <students>
 <student>
 <name>
 <first>Barrie</first>
 <last>Stoff</last>
 </name>
 </student>
 <student>
 <name>
 <first>Andrew</first>
 <last>Silver</last>
 </name>
 </student>
 <student>
 <name>
 <first>Larry</first>
 <last>Cracchiolo</last>

developerWorks® ibm.com/developerWorks/

6 tips for optimizing a native XML database Page 4 of 10

 </name>
 </student>
 <student>
 <name>
 <first>Richard</first>
 <last>Hughes</last>
 </name>
 </student>
 <student>
 <name>
 <first>Bruce</first>
 <last>Silver</last>
 </name>
 </student>
 .
 .
 .
 </students>
</class-info>
#+END_SRC

Performing fewer index lookups
To get the first names of the students that have the last name Silver, you can use an XPath
expression like the one in Listing 2.

Listing 2. XPath expression to find last name Silver
: /class-info/students/student/name[last = "Silver"]/first

If you limited the data to the visible data in the single document in Listing 1, then evaluating the
XPath expression in Listing 2 always correctly returns the result in Listing 3.

Listing 3. The XPath result
<first>Andrew</first>
<first>Bruce</first>

If the data is not indexed, then Listing 2 is always the fastest way to get those results. The
expression limits the number of branches that the database has to search to find the relevant
elements.

If the data is indexed, however, then depending on the specific database implementation that you
use, and provided that you have a very large data set, an expression like the one in Listing 4 might
resolve consistently faster.

Listing 4. XPath expression to use if data is indexed
: //name[last = "Silver"]/first

The reason for the potential improvement is that the system has to look through fewer elements
in the index. However, because of the design of the document in Listing 1, which uses non-unique
element names, the XPath in Listing 4 returns incorrect results; the results include a teacher's
name, Dan. The design precludes you from profiling queries that make use of fewer indexes. A
better design is to replace the non-unique element names in Listing 1 with unique element names,
as Listing 5 describes.

ibm.com/developerWorks/ developerWorks®

6 tips for optimizing a native XML database Page 5 of 10

Listing 5. Replacing non-unique element names from Listing 1 with unique
element names
 //teacher/name => //teacher/teacher-name
 //teacher/name/first => //teacher/teacher-name/teacher-first
 //teacher/name/last => //teach/teacher-name/teacher-last
 //student/name => //student/student-name
 //student/name/first => //student/student-name/student-first
 //student/name/last => //student/student-name/student-last

Supporting faceted search results

The goal of a faceted search is to display links that allow the user to quickly and intuitively narrow
the search results along various axes. In an application that supports faceted search results, a
query that lists all of the teachers in the database might return information like this in the user
interface (see Listing 6).

Listing 6. Faceted search
•Tabor, Gavin
•Nance, Jamey
•Haas, Carlene
•Davies, Yesenia
•Singer, Lupe

Narrow your search:

•School

 •Lusher Elementary School (35)
 •Academy of the Sacred Heart (34)
 •Isidore Newman School (32)
 •Audubon Charter School (28)
 •Benjamin Franklin Elementary Math-Science Magnet (25)

•Grades

 •9 (5)
 •10 (6)
 •11 (6)
 •12 (6)

Listing 6 provides two facets: School and Grades. Each facet contains four or five values that
link to a search that narrows the most recent search. Next to each facet value is a number, in
parentheses, that indicates the total number of teachers that you'll end up with if you click the
link. Faceted search results typically display only a few possible values for each facet. When the
number of distinct values for a facet is small, as is the case for the Grades facet, the application
typically displays all the facets in the order in which they make the most sense. However, when
a facet includes many possible values, then the application often displays only the values that
will return the most results and normally displays those values in descending order of number of
results.

Some native XML databases are incorporating support for faceted searches, but they require
special indexes to deliver the best performance. A typical XQuery algorithm for obtaining the
display values for a facet becomes a bottleneck quickly as the number of records in the database

developerWorks® ibm.com/developerWorks/

6 tips for optimizing a native XML database Page 6 of 10

increase and as the number of possible values for a facet increase. For a large database that has
facets with thousands of values, such an algorithm just won't do. To deliver the power of faceted
searches, native XML engines need to be able to build lexicons from the values that an element
takes on in the database. These lexicons can be implemented from special indexes, which in turn
can require unique element names.

If you have a relatively small native XML database that lacks support for faceted searches and you
need to write your own code to support such functionality, you'll see how unique element names
are just as essential to your code as they are to the faceted-search support code that's already in
existence in the more advanced databases.

Precompute values
The thought of adding redundant data to an XML document is heresy to a seasoned relational
database administrator. However, when your primary concern is performance—for example,
when you have to return faceted search results to queries that run against tens of millions of
records—precomputing some values based on data that exists in the XML document and then
adding the results to the XML document can help improve response times dramatically. Native
XML databases are all about sacrificing storage and tolerating redundance in exchange for
performance.

Suppose that you have a bunch of image meta data XML documents. Every one of these
XML documents has one or more of the elements camera, device, and scanner, which all hold
information about the device that created the image. The device element represents a complex
node that includes an element with the name of the device and several other elements with
additional information. In this example, all of the device elements are needed in other parts of the
application and thus cannot be discarded. The application implements faceted searches and calls
for a facet named scanning device that shows the name of the device that created the image.

Similarly, the image meta data documents have height and width elements, but the application
calls for a facet called size, which can easily be derived from the height and width elements.

Listing 7 is one example.

Listing 7. First image meta data document example


Listing 8 shows a second example.

ibm.com/developerWorks/ developerWorks®

6 tips for optimizing a native XML database Page 7 of 10

Listing 8. Second image meta data document example


Now imagine a database with enough of these records that a query for images taken on
2009-11-16 returns 5,000 images. Of these, the application displays 30. The search-results view
displays various facets, including scanning device and size, with each facet providing a short list
of values. The scanning device facet values include Scanmelter 2000 (1202) and Pixel Maker LS
(207). The size facet values include 1200x1024 (2302) and 800x600 (113).

Think about the code that you might write to satisfy these requirements. The code is fairly easy to
write, but it does not scale well because of the amount of work that it must do to count the number
of records that satisfy the query that each facet value represents. There might be hundreds of
facet values; the code needs to calculate result counts for each one of them in order to determine
which five facet values to list for the facet. The situation gets worse quickly with the number of
records in the database, with the number of facets that your application is displaying, and with the
number of possible facet values for each facet. If your application is displaying 50 facets and deals
with millions of records, then you don't really have an option but to precalculate the facet values
and include them in the record.

The XML documents in Listing 7 and Listing 8 would each take on two new elements: scanner-
name and size. That simple change will allow the implementation to scale much better.

Transform data with your queries
One of the biggest strengths of XQuery is its ability to deliver data exactly as the caller needs it.
But this strength is possibly the most underused. Often, architects are tempted to treat a native
XML database as a back-end XML Web service, that returns XML documents that the front end is
supposed to transform and render as necessary.

Businesses that already use XQuery to retrieve data from a native XML database are always
quick to point out all of the reasons for returning the data in XML format and then using XSLT (for
example) to convert the data at the front end. Here are some of the more common reasons:

• We plan to create other products that use the same data for other purposes
• We have front-end people that already know how to use the XSLT, Perl, PHP, JavaScript, and

Java™ languages
• We want a Service-Oriented Architecture
• None of us know XQuery and we want to limit its use as much as possible
• We have a data pipeline in place
• XQuery looks complicated
• XQuery can't do X

developerWorks® ibm.com/developerWorks/

6 tips for optimizing a native XML database Page 8 of 10

There's not enough room here to rebut each of these statements, but keep the following points in
mind:

• Data that is ready to render to a browser is often much smaller than the original data that the
database stores

• XQuery is easier, more powerful, and more concise than XSLT, by any standard
• Transforming your data on the way out is much faster than transforming it later using XSLT (or

just about anything else)
• You can write XQuery such that clients can request data in various formats
• The general complexity of the application will decrease considerably if the code that

transforms the data is near the code that locates the data and both are written in the same
language

The first of those points—about the size of the data to be rendered versus the size of the original,
untransformed data—bears a little extra consideration. Beware of large XML records. Try to avoid
sending large records to the front end to be transformed there. Putting the smallest possible
chunks of data on the network can often improve the responsiveness and scalability of an
application appreciably. And you'll often be doing exactly that: Putting smaller chunks of data on
the network, when you transform the data on its way out of the database.

The real reason that businesses fail to take advantage of the full power of XQuery is fear of the
unknown. This is completely understandable, but if you already use a native XML database, then
using its full capabilities will only make things better in the end.

Profile the XQuery code

In general, profiling your code means determining how much time the computer spends in each
part of your code. The idea is to identify the parts of your code that might benefit most from
optimization. These are not necessarily the parts that run the slowest; sometimes, a piece of code
that is already quite efficient will be the one you want to focus on the most. For example, one piece
of code that runs in 10 seconds can optimized rather easily to run in less than a second. If that
code runs only once per day, then your efforts might be better spent improving the speed (even
ever so slightly) of a function that runs 1,000,000 times per day.

Most native XML databases have tools to benchmark or profile code. Use them. Sometimes these
tools will not measure the performance of some particular piece of code in the way you want. In
that case, don't hesitate to create your own code to benchmark a process. There's nothing wrong
with inserting code to mark and measure time within your XQuery modules, especially if you can
disable that benchmarking code in production.

Also, because XQuery is a functional programming language, each function stands on its own. To
a large degree, the return sequence of an XQuery function depends exclusively on the parameters
with which you call it. It's easier therefore to develop unit tests and performance tests to assess
XQuery functions than it is to develop tests for functions in standard procedural programming
languages such Java, Python, Perl, C, and PHP. You can easily time functions in your XQuery
code with external processes such as a quick script. A short and clever Emacs script, for example,

ibm.com/developerWorks/ developerWorks®

6 tips for optimizing a native XML database Page 9 of 10

will allow you to run and time XQuery code that you are editing merely by highlighting the code and
hitting a key combination. The script can send the code to the server, have the server evaluate it,
then return the results to a new buffer with an execution-time stamp.

Keep a list of optimizations
Keep a list of potential optimizations that apply to your platform and look through the entire list
every time you need to improve the performance of an application. In addition to the optimizations
that this article has already covered, I keep the following items on my list.

Precompile code where possible

Some native XML databases have the ability to precompile or parse XQuery code. For code that
runs frequently in a server, you'll see measurable gains in performance if you can ensure that the
server doesn't have to parse or compile the code upon each encounter.

Code against the index

In many cases, a native XML database can evaluate an XQuery or XPath expression and resolve
the query directly from the indexes, without ever having to retrieve a document. Where possible,
you should strive to write queries that do this. Look for a database option or search-function option
that allows your search to retrieve its results directly from the indexes and that avoids any kind of
validation-filtering of the results.

Retrieving the results from the index without filtering has its drawbacks. You have to be careful if
the nodes you're searching are not top-level nodes (or fragment roots). Be prepared to understand
the results, which might include nodes that a filtered search would not include.

Consider XQuery extensions

Most native XML databases provide XQuery extensions that are designed to run fast. When you
stray from strict XQuery, your application becomes more tied to a specific product, but in practice,
in production, when dealing with a great deal of data, you definitely want to consider the advantage
of performance extensions. Portability often comes at a price.

Understand forests, stands, and merges

Some native XML databases keep their data in binary format in forests (directories), which contain
stands (files). New records often go into new stands. The system (or an administrator) merges
stands periodically to improve performance—the fewer stands in a forest, the better the query
response times. But you don't want forests to grow to be too large. When you optimize your
system, investigate the maximum optimal size for forests and the maximum number of stands that
you want before you start (or configure the system to start) a merge.

So, data loads trigger merges. And merges can bring a down a system that is operating near the
limit of its throughput capabilities. When possible, you should schedule data loads and merges
to happen when the system load is at its minimum. Data loads have a much smaller impact

developerWorks® ibm.com/developerWorks/

6 tips for optimizing a native XML database Page 10 of 10

on performance than do merges. If your data loads run for long periods of time, then consider
forbidding only merges during peak load times.

Summary

Native XML databases are currently powering sites that support complex searches against
databases with tens of millions of records. Under the right conditions, for some applications, these
databases can give organizations considerable competitive advantages over slower adopters.
But just like any other database technology, native XML databases will provide the most benefit to
those who understand well how to optimize their systems for efficiency and responsiveness.

© Copyright IBM Corporation 2009
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	XQuery and native XML databases
	Avoid normalization
	Employ unique element names
	Performing fewer index lookups
	Supporting faceted search results

	Precompute values
	Transform data with your queries
	Profile the XQuery code
	Keep a list of optimizations
	Precompile code where possible
	Code against the index
	Consider XQuery extensions
	Understand forests, stands, and merges

	Summary
	Resources
	Trademarks

